

1 Atmospheric chemical processing dictates aerosol aluminum solubility: insights from 2 field measurement at two locations in northern China 3 4 Tianyu Zhang, 1,5 Yizhu Chen, 1,5 Huanhuan Zhang, 2 Lei Liu, 3 Chengpeng Huang, 4 Zhengyang Fang, 1,a Yifan Zhang, 1,5 Fu Wang, 4 Lan Luo, 4 Guohua Zhang, 1 Xinming Wang, 1 Mingjin 5 Tang1,* 6 7 8 ¹ State Key Laboratory of Advanced Environmental Technology and Guangdong Key 9 Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute 10 of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China 11 ² Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China ³ Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China 12 ⁴ Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China 13 14 ⁵ College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 15 100049, China 16 ^a Current address: Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-17 0819, Japan 18 19 Correspondence: Mingjin Tang (mingjintang@126.com) 20 21 22

Abstract

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Deposition of mineral dust aerosol into open oceans significantly impacts marine biogeochemistry and primary production, and the deposition rates can be constrained using widely measured dissolved aluminum (Al) in surface seawater as a tracer. However, aerosol Al solubility, a critical parameter used in this method, remains highly uncertain. This work investigated seasonal variations of aerosol Al solubility for supermicron and submicron particles at two locations (Xi'an and Qingdao) in northern China. Aerosol Al solubility was found to be very low at Xi'an and much higher at Qingdao. Furthermore, seasonal variability of Al solubility, its correlation with relative abundance of sulfate and nitrate, and its dependence on relative humidity (RH), are all different at the two locations. We suggest that all the features observed for aerosol Al solubility at the two locations can be well explained by the effects of atmospheric chemical processing. Mineral dust transported to Xi'an (an inland city in Northwest China) was still not significantly aged and thus chemical processing had little effects on aerosol Al solubility. After arriving at Qingdao (a coastal city in the Northwest Pacific), mineral dust was substantially aged by chemical processing, leading to substantial enhancement in aerosol Al solubility. Our work further reveals that aerosol liquid water and acidity play vital roles in the dissolution of aerosol Al by atmospheric chemical processing. We suggest that spatial variation of aerosol Al solubility should be taken into account so that oceanic dust deposition can be better constrained using dissolved Al concentrations in surface seawater.

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

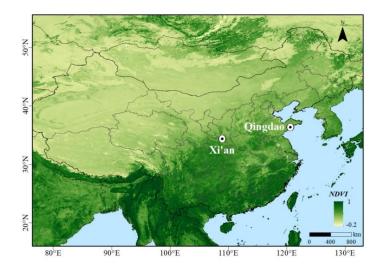
62

63

64

1. Introduction

As an important type of tropospheric aerosols, mineral dust aerosol significantly impacts atmosphere chemistry, climate, and ecological systems (Jickells et al., 2005; Tang et al., 2016; Kok et al., 2023). After long-range transport, deposition of mineral dust into the oceans is a major external source of several nutrient and toxic elements for surface seawater (Moore et al., 2013; Westberry et al., 2023), impacting primary production and biogeochemical cycles in the oceans and having further feedback on the climate system (Mahowald, 2011; Jiang et al., 2024). The deposition flux of desert dust aerosol into the oceans should be accurately estimated before we can assess its impacts on marine biogeochemistry in a reliable manner (Schulz et al., 2012; Anderson et al., 2016). Previous studies used several different methods to estimate dust deposition fluxes and found large discrepancies (Huneeus et al., 2011; Anderson et al., 2016). Deposition of desert dust aerosol is the dominant source of dissolved aluminum (Al) in the surface water of open oceans, and dissolved Al is generally considered to be chemically and biologically inactive in seawater. As a result, dissolved Al concentrations in surface seawater could be used to calculate dust deposition flux into the oceans (Measures and Brown, 1996; Measures and Vink, 2000), and the fractional solubility of aerosol Al (the fraction of aerosol Al that can be dissolved) is one of the key parameters used in this method. Previous studies which used this method to estimate dust depositions fluxes (Han et al., 2008; Measures et al., 2010; Grand et al., 2015; Benaltabet et al., 2022) usually assumed uniform Al solubility values in the range of 1.5-5%. However, field measurements found that aerosol Al solubility could vary by more than an order of magnitude (Baker et al., 2006; Buck et al., 2013), and thereby using a uniform aerosol Al solubility value could lead to large uncertainties in



66 important to understand the spatiotemporal variations of aerosol Al solubility and elucidate the 67 processes and mechanisms which drive such variations. The initial Al solubility is generally low (typically <1.5%) for dust particles over desert 68 69 regions (Shi et al., 2011; Aghnatios et al., 2014; Li et al., 2022), and field studies found that 70 aerosol Al solubility in the troposphere could be much higher and showed wide variability. For 71 example, Al solubility ranged from 0.2-15.9% for total suspended particles (TSP) over the 72 Pacific (Buck et al., 2013), and were in the range of 3-78% over the Atlantic (Buck et al., 2010; 73 Chance et al., 2015). Some studies (Measures et al., 2010; Sakata et al., 2023) found good 74 correlations between dissolved aerosol Al (or Al solubility) and acid species in aerosol particles, 75 and thus suggested that chemical processes in the atmosphere could substantially enhance 76 aerosol Al solubility; furthermore, Li et al. (2017) found that Al solubility was significantly 77 increased during cloud events when cloud processing enhanced the formation of secondary 78 inorganic ions (mainly sulfate and nitrate) and thus increased the acidity of cloud droplets. 79 However, Yang et al. (2023) found no correlations between Al solubility and the concentrations 80 of aerosol acidic species, and concluded that the effect of acid processing on Al solubility was 81 negligible. Aerosol Al solubility over the Atlantic appeared to be higher for air masses from 82 Europe than those from the Saharan region (Baker et al., 2006; López-García et al., 2017), and 83 some studies (Paris et al., 2010; López-García et al., 2017) hypothesized that this could be 84 potentially explained by the influence of anthropogenic aerosol Al if it had higher solubility 85 than desert dust. In summary, although aerosol Al solubility in the atmosphere was explored by previous studies, the governing processes and environmental factors remain poorly understood. 86

estimated dust deposition fluxes (Han et al., 2008; Xu and Weber, 2021). As a result, it is

Figure 1. A map of East Asia and surrounding areas. The two locations (Xi'an and Qingdao) where we collected aerosol particles are highlighted. NDVI: normalized difference vegetation

index provided by MODIS (Moderate Resolution Imaging Spectroradiometer).

In this work, we collected supermicron (above 1 μm) and submicron (below 1 μm) aerosol particles at Xi'an and Qingdao, both located in northern China, and investigated seasonal variations of aerosol Al solubility at these two locations. Taklimakan and Gobi Deserts in northwestern China are two important source regions of Asian dust (Prospero et al., 2002). As shown in Figure 1, Xi'an is an inland city in northwestern China, and the aging extent of dust was found to be quite limited at Xi'an due to its proximity of desert regions (Wang et al., 2014; Wu et al., 2017). As Asian dust is transported eastward, it passes over the North China Plain where anthropogenic emission is very high, and may become much more aged when arriving at Qingdao, a coastal city of the Northwest Pacific (Li et al., 2014; Pan et al., 2017). By comparing aerosol Al solubility at Xi'an and Qingdao, our work can provide valuable insights

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

into how and to which extent aging processes during long-range transport can change aerosol

Al solubility. Dust aerosol concentrations and meteorological conditions vary remarkably at
different seasons in Northern China; as a result, examining its seasonal variations provides a
good opportunity to understand the factors which regulate aerosol Al solubility.

2. Materials and methods

2.1 Sample collection

Samples were collected at two cities (Xi'an and Qingdao) in northern China at four different seasons during 2021-2023 (Zhang et al., 2023; Chen et al., 2024), and further details can be found in the supplement (Text S1 and Table S1). In brief, supermicron (>1 μm) and submicron (<1 μm) particles were simultaneously collected using a two-stage aerosol sampler (TH-150C, Tianhong Co., China) which was operated at 100 L/min, and the sampling duration was typically 23.5 hours for each pair of aerosol samples. Whatman 41 cellulose filters were used for aerosol collection in our work, and they were acid-washed before being used for aerosol sampling to reduce background levels (Zhang et al., 2022). A total of 126 and 106 pairs of aerosol samples were collected at Xi'an and Qingdao, respectively (Zhang et al., 2023; Chen et al., 2024). After collection, all the aerosol samples were stored at -20°C for further analysis. In addition to aerosol particles, we also sampled atmospheric acidic and alkaline gases (mainly NH₃, HCl and HNO₃) at Qingdao, using a ChemComb 3500 Speciation Collection Cartridge (Thermo Fisher Scientific, USA) at a flow rate of 10 L/min (Walters and Hastings, 2018; Fang et al., 2025). Gas sampling was carried out concurrently with aerosol sampling. In brief, NH₃, HNO₃ and HCl were absorbed onto the inner walls of two tandem honeycomb diffusion tubes coated with proper adsorbents, and then converted into NH₄⁺, NO₃⁻ and Cl⁻.

After the sampling was completed, 20 mL ultrapure water was used to rinse each tube immediately, and a PTFE membrane syringe filter (0.22 μ m in pore size) was used to filter the solution. The solution was then frozen at -20°C for further analysis.

2.2 Sample analysis and aerosol acidity calculation

Sample pretreatment and analysis were detailed in our previous work (Zhang et al., 2022), and therefore are only briefly summarized here. The first half of a filter (and only one quarter of a filter for supermicron particles) was shredded and digested in a Teflon jar using a microwave digestion instrument. After digestion, the Teflon jar was filled with 1% HNO₃ (20 mL), and a PTFE membrane syringe filter (0.22 µm in pore size) was used to filter the solution; subsequently, the solution was analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) to determine total concentrations of individual trace elements, including Al.

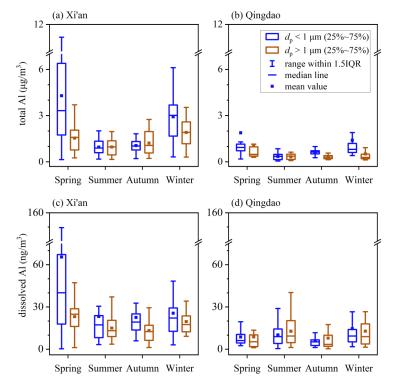
The other half of a filter was immersed in ultrapure water (20 mL) and stirred using an orbital shaking for two hours; in the next step, the solution was filtered using a PTFE membrane syringe filter (0.22 µm in pore size) and divided into two parts. The first solution was acidified to contain 1% HNO₃ and subsequently analyzed by ICP-MS to determine the concentrations of dissolved trace elements; the second solution was analyzed by ion chromatography (IC) to quantify the concentration of water-soluble cations and anions.

The solutions obtained from honeycomb diffusion tubes (see Section 2.1 for more details)

The solutions obtained from honeycomb diffusion tubes (see Section 2.1 for more details) were also analyzed using IC to determine the concentrations of gaseous NH₃, HCl and HNO₃ in the atmosphere. ISORROPIA-II, a widely used aerosol thermodynamic model (Fountoukis and Nenes, 2007), was employed in this work to calculate the acidity of supermicron and submicron particles. It was operated in the forward mode, and aerosol particles were assumed

to remain metastable. Input parameters included concentrations of water-soluble ions in aerosol particles and gaseous NH₃, HCl and HNO₃, temperature and relative humidity (RH). Our previous work (Fang et al., 2025) found good agreement between measured and calculated NH₃ partitioning coefficients at Qingdao, and as a result the method we used could well estimate the acidity of supermicron and submicron particles.

3. Results


3.1 Seasonal variations of total and dissolved aerosol Al

3.1.1 Total aerosol Al

Figure 2 displays seasonal variations of total and dissolved aerosol Al at Xi'an and Qingdao. At Xi'an (Figure 2a), total Al in supermicron particles showed highest concentrations in spring and winter $(1.54\pm0.89 \text{ and } 1.91\pm0.93 \text{ } \mu\text{g/m}^3)$ and lowest concentrations in summer $(0.96\pm0.54 \text{ } \mu\text{g/m}^3)$; a similar seasonal pattern was observed for submicron particles, with total Al concentrations being highest in spring and winter $(4.29\pm3.70 \text{ and } 2.92\pm1.47 \text{ } \mu\text{g/m}^3)$ and lowest in summer $(0.95\pm0.44 \text{ } \mu\text{g/m}^3)$. At Qingdao (Figure 2b), total Al concentrations in supermicron particles were highest in spring $(1.04\pm1.12 \text{ } \mu\text{g/m}^3)$ and lowest in summer and autumn $(0.33\pm0.18 \text{ and } 0.31\pm0.12 \text{ } \mu\text{g/m}^3)$; similarly, for submicron particles, total Al concentrations were also highest in spring $(1.88\pm2.51 \text{ } \mu\text{g/m}^3)$ and lowest in summer and autumn $(0.35\pm0.22 \text{ and } 0.65\pm0.82 \text{ } \mu\text{g/m}^3)$.

Figure 2. Seasonal variations of total and dissolved aerosol Al for submicron and supermicron particles: (a) total Al at Xi'an; (b) total Al at Qingdao; (c) dissolved Al at Xi'an; (d) dissolved Al at Qingdao.

Overall, total aerosol Al concentrations showed similar seasonal variations at Xi'an and Qingdao, being highest in spring and lowest in summer. This was consistent with previous studies carried out in other locations in East Asia, such as Huaniao Island in the East China Sea (Guo et al., 2014), northern Taiwan (Hsu et al., 2008), Hong Kong (Yang et al., 2023), and Japan (Sakata et al., 2023). In East Asia, desert dust aerosol was emitted into the atmosphere mainly in spring, leading to the increase in total aerosol Al concentrations. Lowest concentrations of total aerosol Al were observed in summer because precipitation in Northern

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

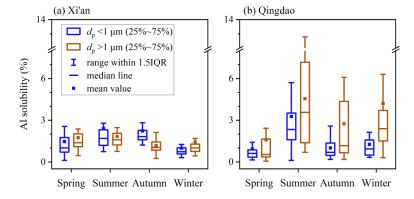
China mainly occurred in summer, leading to enhanced wet deposition of aerosol particles (Cao and Cui, 2021). Furthermore, Oingdao was frequently affected by marine air masses in summer, and this is also one reason why total aerosol Al concentrations were lower in summer than other seasons. As summarized in the supplement (Table S2), total aerosol Al concentrations exhibited evident spatial variations in East Asia. As Asian dust was transported eastward to the North Pacific, a clear decrease in aerosol Al concentrations was observed. Desert dust was the dominant source for aerosol Al, and therefore concentrations of aerosol Al were found to be very high in desert regions. For example, total Al concentrations in TSP could reach 24 μg/m³ over the Taklimakan Desert (Zhang et al., 2003). In our current study, annual average total Al concentrations at Xi'an, an inland city close to the desert, were reported to be 1.42±0.86 and 2.28±2.35 µg/m³ for supermicron and submicron particles, significantly lower than that observed over the Taklimakan Desert. Further decrease in total Al concentrations was observed in coastal and oceanic regions. For example, our work found that the annual average total Al concentrations were 0.56 ± 0.75 and $1.08\pm1.67 \mu g/m^3$ for supermicron and submicron particles at Qingdao, lower than those at Xi'an; total Al concentrations in TSP ranged from 0.17 to 1.72

3.1.2 Dissolved aerosol Al

central Pacific (Measures et al., 2010).

At Xi'an (Figure 2c), for supermicron particles, dissolved aerosol Al concentrations were highest in spring (23.1±10.9 ng/m³) and lowest in summer and autumn (15.0±8.7 and 13.2±8.6 ng/m³); for submicron particles, dissolved Al concentrations were also highest in spring

μg/m³ in Hiroshima (Sakata et al., 2023), and further decreased to 1-56 ng/m³ in Hawaii in the

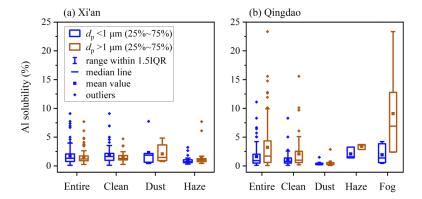


198 $(65.4\pm79.2 \text{ ng/m}^3)$ and lowest in summer and autumn $(23.2\pm23.4 \text{ and } 22.6\pm20.1 \text{ ng/m}^3)$. Total 199 (Figure 2a) and dissolved aerosol Al (Figure 2c) showed similar seasonal patterns at Xi'an, 200 indicating that dissolved aerosol Al was mainly regulated by total aerosol Al. 201 As shown in Figure 2d, the average dissolved aerosol Al concentrations were 8.8±10.8, 12.8±11.1, 7.9±10.5 and 12.8±12.9 ng/m³ for supermicron particles at Qingdao in spring, 202 203 summer, autumn, and winter, respectively, and 8.7±5.8, 10.2±8.2, 6.0±4.8 and 14.5±15.2 ng/m³ 204 for submicron particles. Dissolved aerosol Al concentrations were highest in summer and 205 winter and lowest in autumn for both supermicron and submicron particles. In contrast to Xi'an, 206 total and dissolved aerosol Al at Qingdao showed different seasonal patterns (Figures 2b and 207 2d); for example, total Al concentrations were lowest in summer at Qingdao when dissolved 208 Al concentrations were highest. This indicates that dissolved aerosol Al at Qingdao was not 209 only regulated by total aerosol Al but also affected by other factors such as atmospheric aging processes. 210 211 Compared to Xi'an, dissolved Al concentrations at Qingdao were lower across all the four 212 seasons, mainly because total Al concentrations were much lower at Qingdao (Tables S3-S4 in the supplement). As shown in Figure 2, similar seasonal patterns were observed at two 213 214 locations for total aerosol Al, but dissolved aerosol Al showed very different seasonality; this 215 suggests that seasonal patterns of aerosol Al solubility were different at Xi'an and Qingdao, as 216 presented in Section 3.2. 217 3.2 Fractional solubility of aerosol Al 218 3.2.1 Seasonal variations of Al solubility

median solubilities of aerosol Al were determined to be 1.38%, 1.59%, 1.04% and 1.01% for supermicron particles at Xi'an in spring, summer, autumn and winter, respectively, and 1.01%, 1.69%, 1.82% and 0.74% for submicron particles. Aerosol Al solubilities were generally low for the four seasons at Xi'an, showing no apparent variation with seasons (Figure 3a). In contrast, aerosol Al solubilities exhibited distinct seasonal variability at Qingdao (Figure 3b), and the median Al solubilities were highest in summer (3.56% and 2.33%) and lowest in spring (0.54% and 0.61%) for both supermicron and submicron particles.

Figure 3. Seasonal variations of aerosol Al solubility for submicron and supermicron particles at (a) Xi'an and (b) Qingdao.

In three seasons (summer, autumn and winter), aerosol Al solubility at Qingdao was significantly higher than that at Xi'an (Figure 3, Table S5). This is likely because Xi'an is close to major deserts in northwestern China and thus the aging extent of mineral dust transported to Xi'an was rather limited (Wang et al., 2014; Wu et al., 2017). On the contrary, Qingdao is much farther from deserts and consequently mineral dust aerosol which arrived at Qingdao after long-


solubility. 238 239 On the other hand, no significant difference in aerosol Al solubility was observed between Xi'an and Qingdao in spring, with median aerosol Al solubilities being <1.4% for supermicron 240 241 and submicron particles (Figure 3). This agrees with a previous study (Hsu et al., 2010) which 242 found that aerosol Al solubility was very low (average: ~0.7%) in spring even over the East 243 China Sea. Furthermore, similar to what we observed in spring at Xi'an and Qingdao, Al 244 solubility was found to be low (<1.5%) for surface soil particles collected from deserts (Shi et 245 al., 2011; Aghnatios et al., 2014; Li et al., 2022). Overall, our work implies that in spring when 246 Asian dust occurred most frequently, mineral dust particles arriving at Qingdao after long-247 distance transport did not show significant increase in Al solubility. 248 3.2.2 Al solubility under different weather conditions 249 We encountered four representative weather conditions (i.e. clean, dust, haze and fog days) 250 during our sampling at Xi'an and Qingdao, and investigated aerosol Al solubility under 251 different weather conditions (Figure 4, Tables S6-S7). 252 At Xi'an, no significant difference in Al solubility was observed during clean, haze, and 253 dust days (Figure 4a, Table S6), with median values in the range of 1.01-1.47% for supermicron 254 particles and 0.72-1.86% for submicron particles. Al solubility was found to be <1.2% for three 255 desert dust samples (Luochuan loess, Arizona test dust, and dust collected during a dust storm 256 in Xinjiang) (Li et al., 2022), and ranged from 0.47% to 1.42% for aerosol particles generated 257 using soil samples from Saharan desert (Shi et al., 2011). Compared to desert dust in source 258 regions, Al solubility was not higher under different weather conditions at Xi'an. In addition,

2020), thereby leading to enhanced dissolution of aerosol Al and thus the increase in Al

although emission and accumulation of anthropogenic pollutants was greatly enhanced during haze days at Xi'an (An et al., 2019; Cao and Cui, 2021), there was no obvious increase in aerosol Al solubility, indicating that the effects of anthropogenic emissions on aerosol Al solubility was limited at Xi'an. Therefore, one may conclude that aerosol Al solubility at Xi'an was not different from initial Al solubility of desert dust.

Figure 4. Aerosol Al solubility under different weather conditions for submicron and supermicron particles: (a) Xi'an, (b) Qingdao.

Being different to Xi'an, aerosol Al solubility at Qingdao shows remarkable variations under different weather conditions (Figure 4b, Table S7). Median Al solubilities were determined to be 0.31% and 0.24% for supermicron and submicron particles during dust days, significantly lower than these on clean days (0.99% and 0.77%, respectively). This is probably because higher wind speeds during dust events hindered the accumulation of atmospheric pollutants and shortened the transport time to Qingdao, and thus limiting the aging of mineral dust aerosol. This explanation is supported by a recent study (Zhang et al., 2024) which found that the aging extent of dust particles in Japan was much lower during fast-moving dust events

than slow-moving dust events. Moreover, large amounts of alkaline components (such as carbonates) which were emitted to the atmosphere during dust days neutralized acid species and therefore inhibited acid-promoted dissolution of aerosol trace elements (Zhi et al., 2025).

Figure 4b also suggests that aerosol Al solubilities were much higher during haze and fog days at Qingdao, when compared to clean days. Highest Al solubilities were observed during fog days, with median values being 6.90% for supermicron particles and 1.38% for submicron particles, followed by haze days (3.64% and 1.58%, respectively). This is very likely due to enhanced chemical processing during haze and fog periods (Shi et al., 2020; Shang et al., 2024), and especially during fog days the large increase in RH cause huge increase in aerosol liquid water, therefore greatly promoting aqueous reactions and Al dissolution.

In summary, aerosol Al solubility at Xi'an was low in general, and did not show much variability in different seasons or under different weather conditions. Compared to Xi'an, aerosol Al solubility was higher at Qingdao; furthermore, it was higher in the other three seasons than in spring, and much higher for haze and fog days than dust days. These results imply that atmospheric aging had little effects on aerosol Al solubility at Xi'an but could significantly increase aerosol Al solubility at Qingdao, as further elaborated in Section 4.

4. Discussion

As shown in Figure 5, our work observed the inverse dependence of aerosol Al solubility on total Al concentrations at both Xi'an and Qingdao, given by Eq. (1):


$$f_s(Al) = a \times [Al]^{-b} \tag{1}$$

where $f_s(Al)$ is aerosol Al solubility (%) and [Al] is total Al concentration (ng/m³). Such relationship was also reported in some previous studies (Jickells et al., 2016; Shelley et al.,

2018; Baker et al., 2020; Shelley et al., 2025). Baker and Jickells (2006) suggested that such inverse relationship was due to that larger particles have higher deposition velocities and lower Al solubility: aerosol Al concentrations decrease during transport in the atmosphere due to deposition, with deposition being faster for larger particles; as a result, aerosol particles will be enriched with smaller particles with higher Al solubility. However, Shi et al. (2011) found no significant change in Al solubility with particle size for desert dust samples, and therefore put the explanation proposed by Baker and Jickells (2006) into doubt.

Figure 5. Aerosol Al solubility versus total aerosol Al concentrations: (a) submicron particles at Xi'an, (b) supermicron particles at Xi'an, (c) submicron particles at Qingdao, (d) supermicron particles at Qingdao.

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

Aerosol Fe solubility was also frequently observed to increase with the decrease in total Fe concentrations (Sedwick et al., 2007; Mahowald et al., 2018; Meskhidze et al., 2019), and one possible reason is the influence of anthropogenic aerosol Fe (Sholkovitz et al., 2009; Ito and Shi, 2016) with higher solubility than desert dust (Schroth et al., 2009; Fu et al., 2012; Ito et al., 2021). Nevertheless, being different from aerosol Fe, aerosol Al stems predominantly from desert dust, with little contribution from anthropogenic sources; furthermore, Al solubility was measured to be 0.4±0.6% for coal fly ash (Li et al., 2022), an important type of anthropogenic aerosols, not higher than that for desert dust (0.8±0.4%). Therefore, we suggest that anthropogenic emission may not be able to explain the inverse dependence of Al aerosol solubility on total Al concentrations. We argue that chemical processing in the atmosphere can very well explain such inverse dependence. Total aerosol Al concentrations decrease with transport due to deposition, while reactions with acidic gases (such as SO₂ and NO_x) can significantly enhance the dissolution of aerosol Al (Jickells et al., 2016). Figure 5 shows that the inverse dependence of Al solubility on total Al concentration was more pronounced at Qingdao, with the slopes (b values) much larger than those obtained at Xi'an. This is because compared to Xi'an, Qingdao is more distant from deserts and therefore dust aerosol is expected to be more aged at Qingdao. It also further supports the vital role chemical aging plays in regulating aerosol Al solubility,

4.1 Effects of acid processing and the role of RH

4.1.1 Effects of acid processing

https://doi.org/10.5194/egusphere-2025-2235 Preprint. Discussion started: 17 June 2025 © Author(s) 2025. CC BY 4.0 License.

330

331

332

333

334

335

336

337

338

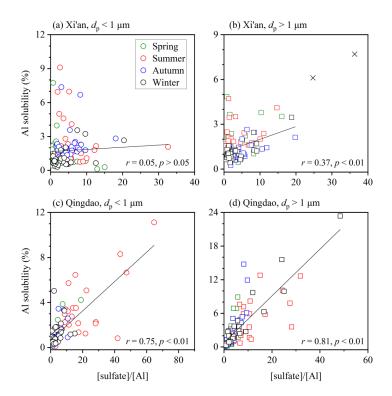
339

340

341

342

343

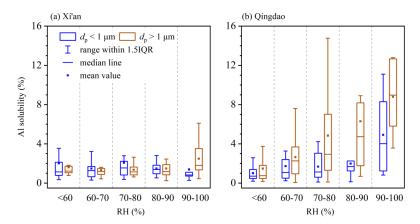

344

345

Laboratory experiments found that the amount of Al dissolved from minerals would increase with the decrease in solution pH (Amram and Ganor, 2005; Bibi et al., 2011, 2014; Cappelli et al., 2018), and some field measurements also suggested that acid processing in the atmosphere could lead to significant increase in aerosol Al solubility (Measures et al., 2010; Sakata et al., 2023). In this work, we examined the relationship between aerosol Al solubility and the relative abundance of acidic species ([sulfate]/[Al] and [nitrate]/[Al]) at Xi'an and Qingdao. It should be noted that non-sea-salts sulfate (Virkkula et al., 2006), instead of sulfate, was used at Qingdao because it is a coastal city and heavily impacted by sea spray aerosol. At Xi'an, aerosol Al solubility showed no significant correlation with [sulfate]/[Al] or [nitrate]/[Al] for either supermicron or submicron particles (r < 0.4, Figure 6 and S1), indicating that acid processing did not enhance aerosol Al solubility. Enhancement of aerosol trace element solubility by acid processing requires internal mixing of acid species with mineral dust particles (Baker and Croot, 2010). Previous studies (Wang et al., 2014; Wu et al., 2017) suggested that mineral dust particles observed at Xi'an which is close to deserts largely remained externally mixed with acid species, and thus aerosol Al solubility was not significantly enhanced by acid processing at Xi'an.

Figure 6. Aerosol Al solubility versus [sulfate]/[Al]: (a) submicron particles at Xi'an, (b) supermicron particles at Xi'an, (c) submicron particles at Qingdao, (d) supermicron particles at Qingdao. Data represented by crosses are not included in fitting.

On the contrary, Figure 6 shows that aerosol Al solubility at Qingdao was well correlated with [sulfate]/[Al] (r > 0.7, p < 0.01), implying that acid-promoted dissolution significantly enhanced Al solubility. We also found that correlations of Al solubility with [sulfate]/[Al] was better than those with [nitrate]/[Al] (Figures 6 and S1, Table S8), in line with a previous study (Sakata et al., 2023) which found aerosol Al solubility at Hiroshima, southern Japan, to be correlated with [sulfate]/[Al] but not with [nitrate]/[Al]. This may imply that chemical



processing by sulfate was more important than nitrate for Al solubility enhancement via acid processing, likely because aluminosilicate dust particles tend to react preferentially with SO₂ and H₂SO₄ while nitrogen oxides react mainly with carbonate particles (Sullivan et al., 2007; Fitzgerald et al., 2015). Furthermore, our work reveals better correlations between Al solubility and [sulfate]/[Al] for supermicron particles than submicron particles (Figure 6), indicating that the effect of acid processing on Al solubility was more important in supermicron particles.

4.1.2 The role of RH

Relative humidity (RH) is a vital factor influencing liquid water contents and phase state of aerosol particles and thus their secondary chemistry. When RH increased >60%, the phase state of aerosol particles in northern China changed from semisolid to liquid (Liu et al., 2017; Sun et al., 2018; Song et al., 2022), leading to large increase in aerosol liquid water content and thereby potentially affecting aerosol Al solubility.

Figure 7. Aerosol Al solubility at different relative humidity (RH) for submicron and supermicron particles: (a) Xi'an, (b) Qingdao.

We observed no apparent variation of aerosol Al solubility with RH at Xi'an (Figure 7a). When RH was <60%, median Al solubilities for supermicron and submicron particles were 1.22% and 1.14%, respectively; when RH increased >90%, the median Al solubilities were determined to be 1.82% and 0.82%, showing no obvious increase when compared to those at <60% RH. This again may imply that chemical processing had very limited impact on aerosol Al solubility at Xi'an.

In contrast, RH played an important role in regulating aerosol Al solubility at Qingdao. As shown in Figure 7b, for supermicron particles, the median Al solubility was only 0.76% at <60% RH, and gradually increased to 4.73% at 80-90% RH, and abruptly increased to 8.87% at >90% RH. For submicron particles, median Al solubility was <1% at <60% RH, and further increase in RH to 80-90% did not lead to large changes in Al solubility; nevertheless, when RH exceeded 90%, the median Al solubility was remarkably increased to 4.02%, much higher than those observed when RH was < 90%.

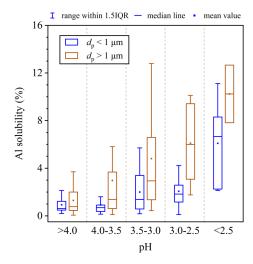

4.2 Effects of aerosol acidity on aerosol Al solubility at Qingdao

Figure 8 shows the dependence of aerosol Al solubility on aerosol acidity (represented by pH) at Qingdao (we did not measure NH₃ at Xi'an and thus could not estimate the aerosol acidity in a reliable manner). For supermicron particles, the median Al solubility was only 0.99% when aerosol pH was >4.0, and gradually increased to 10.24% as aerosol pH was decreased to <2.5. For submicron particles, the median Al solubility was only 0.69% when pH was >4.0, increased slightly with the decrease in pH when pH was in the range of 2.5-4.0, and then increased greatly to 6.09% when pH was decreased to <2.5. In addition, aerosol acidity at Qingdao was highest in summer and lowest in spring (Chen et al., 2024), consistent with the

seasonal variation of aerosol Al solubility, further supporting the importance of aerosol acidity in regulating Al solubility.

Figure 8. Aerosol Al solubility corresponding to different aerosol acidity for submicron and supermicron particles in Qingdao.

As shown in Figure S2, aerosol Al solubility was generally <2% when aerosol acidity was low (pH > 4.0), and higher Al solubility (>2%) was usually observed for samples with high RH and high acidity (pH < 4.0), again underscoring the roles of aerosol acidity (and RH). However, some samples exhibited low Al solubility although the corresponding RH and aerosol acidity were both higher, and such phenomenon was more pronounced for submicron particles. This is very likely linked with aerosol mixing state (Riemer et al., 2019). Aerosol Al solubility and acidity used in our work are both the average properties of an aerosol sample which contains numerous particles, while in reality the two properties will have large particle-to-particle variations. For a given aerosol sample, it can happen that particles with high acidity may

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

contain very little Al while particles with low acidity are enriched in Al; in this case, high acidity do not promote Al solubility for this sample.

At Xi'an, no significant difference in aerosol Al solubility was found between

4.3 Size-dependence of aerosol Al solubility

supermicron and submicron particles across all the four seasons (Figure 3a). This is because the aging extent of dust particles was rather limited at Xi'an (Wang et al., 2014; Wu et al., 2017) and Al solubility does not vary with particle size for fresh dust particles (Shi et al., 2011). At Qingdao, aerosol Al solubility showed no significant difference between supermicron and submicron particles in spring, because the aging extent of dust arriving at Qingdao was also limited in spring when Asian dust occurred most frequently. However, in the other three seasons, Al solubility was significantly higher for supermicron particles than submicron particles at Qingdao, and the ratios of median Al solubility in supermicron particles to that in submicron particles were found to be 1.53, 1.70 and 2.57 in summer, autumn and winter, respectively. Similar to our observation at Qingdao, Li et al. (2017) found that aerosol Al solubility was significantly higher for TSP (14-28%) than PM_{2.5} (2-23%) at the summit of Mount Heng, southern China. On the other hand, a few other studies (Baker et al., 2020; Hsieh et al., 2023; Sakata et al., 2023; Yang et al., 2023) found that aerosol Al solubility was higher in fine particles than coarse particles. For example, aerosol Al solubility was found to increase with the decrease in particle size over the tropical eastern Atlantic (Baker et al., 2020), being ~10.31% for particles in the size of 0.36-0.61 µm and 0.43-4.53% for particles above 0.61 µm. At Hiroshima, southern Japan, aerosol Al solubility was reported to be 8.82±6.48% for fine particles (<1.3 μm), more

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

than two times larger than that (3.25±3.41%) for coarse particles (>1.3 µm) (Sakata et al., 2023). Baker and Jickells (2006) suggested that this is because fine particles have larger surface-tovolume ratios and thus facilitate Al dissolution via acid processing. Hsieh et al. (2023) found aerosol Al solubility to be 38% for fine particles (0.57-1.0 μm) but only 0.37% for coarse particles (>7.3 μm) over the East China Sea, and suggested that the observed size-dependence could be explained by the enrichment of anthropogenic Al (which has higher solubility than dust Al) in fine particles. However, aerosol Al originates predominantly from desert dust, with little contributions from anthropogenic sources (Taylor and McLennan, 1985; Mahowald et al., 2018), and fractional solubility of anthropogenic Al was not necessarily higher than desert dust (Li et al., 2022). As discussed above, there is not clear yet how and why aerosol Al solubility varies with particle size. Such discrepancy is at least partly because different leaching protocols were used in previous studies to extract dissolved aerosol Al and thereby Al solubility obtained in different studies was not directly comparable (Meskhidze et al., 2019; Li et al., 2023; Li et al., 2024). Furthermore, mechanistic insights can be obtained by laboratory experiments which examine the size dependence of the solubility and dissolution kinetics of Al for mineral dust particles under atmospherically relevant conditions.

5. Conclusions and atmospheric implications

Deposition of mineral dust aerosol is a major external source of several nutrient and toxic elements for surface water in open oceans, and thus have significant impacts on marine biogeochemistry; however, previous studies which estimated dust deposition flux into the oceans reveals large discrepancies. Aerosol Al solubility, which is a critical parameter in using

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

dissolved Al concentrations in surface seawater as a tracer to constrain dust deposition flux, remains poorly understood. In this work, we investigated seasonal variations of aerosol Al solubility for supermicron (>1 µm) and submicron (<1 µm) aerosol particles at Xi'an and Qingdao, both located in northern China, in attempt to elucidate the processes and mechanisms which govern the variation of aerosol Al solubility in the atmosphere. At Xi'an, aerosol Al solubility was low in general for both supermicron and submicron particles, showing no obvious variability in different seasons or under different weather conditions. This implies that chemical processing did not significantly enhance aerosol Al solubility at Xi'an, as it is an inland city close to major deserts in northwestern China and thus the aging extent of mineral dust particles arriving at Xi'an was quite limited. Compared to Xi'an, aerosol Al solubility was higher at Qingdao, a coastal city in northern China; furthermore, Al solubility was higher in the other three seasons than in spring, and much higher for haze- and especially fog-impacted days than dust days. This indicates that chemical processing substantially increased aerosol Al solubility at Qingdao. Aerosol Al solubility at Xi'an showed no significant correlation with relative abundance of sulfate or nitrate, and did not vary apparently with RH; in contrast, Al solubility at Qingdao was well correlated with relative abundance of sulfate and nitrate, and increased with RH. This further supports that chemical processing had little impacts on aerosol Al solubility at Xi'an (because the aging extent of mineral dust aerosol at Xi'an is very limited) but significantly increased aerosol Al solubility at Qingdao (because mineral dust particles transported to Qingdao were substantially aged). Moreover, for both supermicron and submicron particles, Al solubility at Qingdao was found to increase with aerosol acidity (in addition to RH),

476 underscoring the vital role of aerosol liquid water and acidity in enhancing Al dissolution via 477 chemical aging. 478 Our comprehensive investigation of aerosol Al solubility at two locations in Northern China suggests that atmospheric chemical processing dictates aerosol Al solubility. As a result, 479 480 aerosol Al solubility is expected to spatially variable, depending on the extent of chemical 481 processing. For example, we found that aerosol Al solubility is higher at Qingdao than Xi'an 482 in general, and expect it to increase further as mineral dust aerosol is further transported 483 eastward to the Pacific. As a result, when leveraging dissolved Al concentrations in surface 484 seawater as a tracer to estimate deposition flux of desert dust aerosol into open oceans, 485 considering the spatial distribution of aerosol Al solubility, instead of using a uniform value on 486 the global scale, can help us better constrain the oceanic deposition flux of desert dust. 487 488 Author contribution. 489 Tianyu Zhang: Formal analysis, Investigation, Writing - Original Draft, Writing -490 Review & Editing; Yizhu Chen: Formal analysis, Investigation, Writing - Original Draft; 491 Huanhuan Zhang: Investigation; Lei Liu: Writing - Review & Editing; Chengpeng Huang: 492 Investigation; Zhengyang Fang: Investigation; Yifan Zhang: Investigation; Fu Wang: 493 Resources; Lan Luo: Resources; Guohua Zhang: Writing - Review & Editing; Xinming 494 Wang: Resources; Mingjin Tang: Conceptualization, Formal analysis, Supervision; Writing 495 - Original Draft, Writing - Review & Editing. 496 Competing interests. 497 The authors declare that they have no conflict of interest.

Acknowledgement.

498

499 We would like to thank colleagues at Shandong University, Shaanxi University of Science 500 and Technology, and Institute of Earth Environment, Chinese Academy of Sciences for their 501 support during field measurements. 502 Financial support. 503 This work was sponsored by National Natural Science Foundation of China (42277088 504 and 42407149), Guangzhou Bureau of Science and Technology (2024A04J6533), International 505 Partnership Program of Chinese Academy of Sciences (164GJHZ2024011FN), and 506 Guangdong Foundation for Program of Science and Technology Research 507 (2023B1212060049). 508 509 References 510 Aghnatios, C., Losno, R., and Dulac, F.: A fine fraction of soil used as an aerosol analogue during the DUNE 511 experiment: sequential solubility in water, decreasing pH step-by-step, Biogeosciences, 11, 4627-4633, 512 https://doi.org/10.5194/bg-11-4627-2014, 2014. 513 Amram, K., and Ganor, J.: The combined effect of pH and temperature on smectite dissolution rate under acidic 514 conditions, Geochim. Cosmochim. Acta, 69, 2535-2546, https://doi.org/10.1016/j.gca.2004.10.001, 515 516 An, Z., Huang, R., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi, Z., Han, Y., Gu, Z., and Ji, Y.: Severe haze 517 in northern China: A synergy of anthropogenic emissions and atmospheric processes, PNAS, 116, 518 8657-8666, https://doi.org/10.1073/pnas.1900125116, 2019. 519 Anderson, R. F., Cheng, H., Edwards, R. L., Fleisher, M. Q., Hayes, C. T., Huang, K. F., Kadko, D., Lam, P. J., 520 Landing, W. M., Lao, Y., Lu, Y., Measures, C. I., Moran, S. B., Morton, P. L., Ohnemus, D. C., 521 Robinson, L. F., and Shelley, R. U.: How well can we quantify dust deposition to the ocean?, Phil. 522 Trans. R. Soc. A, 374: 20150285, https://doi.org/10.1098/rsta.2015.0285, 2016. 523 Baker, A. R., and Jickells, T. D.: Mineral particle size as a control on aerosol iron solubility, Geophys. Res. Lett., 524 33, L17608, https://doi.org/10.1029/2006g1026557, 2006. 525 Baker, A. R., Jickells, T. D., Witt, M., and Linge, K. L.: Trends in the solubility of iron, aluminium, manganese 526 and phosphorus in aerosol collected over the Atlantic Ocean, Mar. Chem., 98, 43-58, 527 https://doi.org/10.1016/j.marchem.2005.06.004, 2006. 528 Baker, A. R., and Croot, P. L.: Atmospheric and marine controls on aerosol iron solubility in seawater, Mar.

530 Baker, A. R., Li, M., and Chance, R.: Trace Metal Fractional Solubility in Size - Segregated Aerosols From the 531 Tropical Eastern Atlantic Ocean, Global Biogeochem. Cycles, 34, e2019GB006510, 532 https://doi.org/10.1029/2019gb006510, 2020. 533 Benaltabet, T., Lapid, G., and Torfstein, A.: Dissolved aluminium dynamics in response to dust storms, wet 534 deposition, and sediment resuspension in the Gulf of Aqaba, northern Red Sea, Geochim. Cosmochim. 535 Acta, 335, 137-154, https://doi.org/10.1016/j.gca.2022.08.029, 2022. 536 Bibi, I., Singh, B., and Silvester, E.: Dissolution of illite in saline-acidic solutions at 25°C, Geochim. 537 Cosmochim. Acta, 75, 3237-3249, https://doi.org/10.1016/j.gca.2011.03.022, 2011. 538 Bibi, I., Singh, B., and Silvester, E.: Dissolution kinetics of soil clays in sulfuric acid solutions: Ionic strength 539 and temperature effects, Appl. Geochem., 51, 170-183, 540 https://doi.org/10.1016/j.apgeochem.2014.10.004, 2014. 541 Buck, C. S., Landing, W. M., Resing, J. A., and Measures, C. I.: The solubility and deposition of aerosol Fe and 542 other trace elements in the North Atlantic Ocean: Observations from the A16N CLIVAR/CO2 repeat 543 hydrography section, Mar. Chem., 120, 57-70, https://doi.org/10.1016/j.marchem.2008.08.003, 2010. 544 Buck, C. S., Landing, W. M., and Resing, J.: Pacific Ocean aerosols: Deposition and solubility of iron, 545 aluminum, and other trace elements, Mar. Chem., 157, 117-130, 546 https://doi.org/10.1016/j.marchem.2013.09.005, 2013. 547 Cao, J. J., and Cui, L.: Current Status, Characteristics and Causes of Particulate Air Pollution in the Fenwei 548 Plain, China: A Review, J. Geophys. Res.-Atmos., 126, e2020JD034472, 549 https://doi.org/10.1029/2020JD034472, 2021. 550 Cappelli, C., Yokoyama, S., Cama, J., and Huertas, F. J.: Montmorillonite dissolution kinetics: Experimental and 551 reactive transport modeling interpretation, Geochim. Cosmochim. Acta, 227, 96-122, 552 https://doi.org/10.1016/j.gca.2018.01.039, 2018. 553 Chance, R., Jickells, T. D., and Baker, A. R.: Atmospheric trace metal concentrations, solubility and deposition 554 fluxes in remote marine air over the south-east Atlantic, Mar. Chem., 177, 45-56, 555 https://doi.org/10.1016/j.marchem.2015.06.028, 2015. 556 Chen, Y., Wang, Z., Fang, Z., Huang, C., Xu, H., Zhang, H., Zhang, T., Wang, F., Luo, L., Shi, G., Wang, X., and 557 Tang, M.: Dominant Contribution of Non-dust Primary Emissions and Secondary Processes to 558 Dissolved Aerosol Iron, Environ. Sci. Technol., 58, 17355-17363, 559 https://doi.org/10.1021/acs.est.4c05816, 2024. 560 Fang, Z., Dong, S., Huang, C., Jia, S., Wang, F., Liu, H., Meng, H., Luo, L., Chen, Y., Zhang, H., Li, R., Zhu, Y., 561 and Tang, M.: On using an aerosol thermodynamic model to calculate aerosol acidity of coarse particles, J. Environ. Sci., 148, 46-56, https://doi.org/10.1016/j.jes.2023.07.001, 2025. 562 563 Fitzgerald, E., Ault, A. P., Zauscher, M. D., Mayol-Bracero, O. L., and Prather, K. A.: Comparison of the mixing 564 state of long-range transported Asian and African mineral dust, Atmos. Environ., 115, 19-25, 565 https://doi.org/10.1016/j.atmosenv.2015.04.031, 2015. 566 Fountoukis, C., and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model 567 for K⁺-Ca²⁺-Mg²⁺-NH₄⁺-Na⁺-SO₄²⁻-NO₃⁻-Cl⁻-H₂O aerosols, Atmos. Chem. Phys., 7, 4639-4659, https://doi.org/10.5194/acp-7-4639-2007, 2007. 568 569 Fu, H., Lin, J., Shang, G., Dong, W., Grassian, V. H., Carmichael, G. R., Li, Y., and Chen, J.: Solubility of Iron 570 from Combustion Source Particles in Acidic Media Linked to Iron Speciation, Environ. Sci. Technol., 571 46, 11119-11127, https://doi.org/10.1021/es302558m, 2012.

Chem., 120, 4-13, https://doi.org/10.1016/j.marchem.2008.09.003, 2010.

- Grand, M. M., Measures, C. I., Hatta, M., Hiscock, W. T., Buck, C. S., and Landing, W. M.: Dust deposition in
 the eastern Indian Ocean: The ocean perspective from Antarctica to the Bay of Bengal, Global
 Biogeochem. Cycles, 29, 357-374, https://doi.org/10.1002/2014GB004898, 2015.
- Guo, L., Chen, Y., Wang, F., Meng, X., Xu, Z., and Zhuang, G.: Effects of Asian dust on the atmospheric input
 of trace elements to the East China Sea, Mar. Chem., 163, 19-27,
 https://doi.org/10.1016/j.marchem.2014.04.003, 2014.
- Han, Q., Moore, J. K., Zender, C., Measures, C., and Hydes, D.: Constraining oceanic dust deposition using
 surface ocean dissolved Al, Global Biogeochem. Cycles, 22, GB2003,
 https://doi.org/10.1029/2007GB002975, 2008.
- Hsieh, C.-C., You, C.-F., and Ho, T.-Y.: The solubility and deposition flux of East Asian aerosol metals in the East China Sea: The effects of aeolian transport processes, Mar. Chem., 253, 104268, https://doi.org/10.1016/j.marchem.2023.104268, 2023.
- Hsu, S.-C., Wong, G. T. F., Gong, G.-C., Shiah, F.-K., Huang, Y.-T., Kao, S.-J., Tsai, F., Candice Lung, S.-C.,
 Lin, F.-J., Lin, I. I., Hung, C.-C., and Tseng, C.-M.: Sources, solubility, and dry deposition of aerosol
 trace elements over the East China Sea, Mar. Chem., 120, 116-127,
 https://doi.org/10.1016/j.marchem.2008.10.003, 2010.
- Hsu, S. C., Liu, S. C., Huang, Y. T., Lung, S. C. C., Tsai, F., Tu, J. Y., and Kao, S. J.: A criterion for identifying
 Asian dust events based on Al concentration data collected from northern Taiwan between 2002 and
 early 2007, J. Geophys. Res.-Atmos., 113, D18306, https://doi.org/10.1029/2007jd009574, 2008.
- Huneeus, N., Schulz, M., Balkanski, Y., Griesfeller, J., Prospero, J., Kinne, S., Bauer, S., Boucher, O., Chin, M.,
 Dentener, F., Diehl, T., Easter, R., Fillmore, D., Ghan, S., Ginoux, P., Grini, A., Horowitz, L., Koch, D.,
 Krol, M. C., Landing, W., Liu, X., Mahowald, N., Miller, R., Morcrette, J. J., Myhre, G., Penner, J.,
 Perlwitz, J., Stier, P., Takemura, T., and Zender, C. S.: Global dust model intercomparison in AeroCom
 phase I, Atmos. Chem. Phys., 11, 7781-7816, https://doi.org/10.5194/acp-11-7781-2011, 2011.
- Ito, A., and Shi, Z.: Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean, Atmos. Chem. Phys., 16, 85-99, https://doi.org/10.5194/acp-16-85-2016, 2016.
- 598 Ito, A., Ye, Y., Baldo, C., and Shi, Z.: Ocean fertilization by pyrogenic aerosol iron, npj Clim. Atmos. Sci., 4, 30, 599 https://doi.org/10.1038/s41612-021-00185-8, 2021.
- Jeong, G. Y.: Mineralogy and geochemistry of Asian dust: dependence on migration path, fractionation, and
 reactions with polluted air, Atmos. Chem. Phys., 20, 7411-7428, https://doi.org/10.5194/acp-20-7411-602
 2020, 2020.
- Jiang, H.-B., Hutchins, D. A., Zhang, H.-R., Feng, Y.-Y., Zhang, R.-F., Sun, W.-W., Ma, W., Bai, Y., Wells, M.,
 He, D., Jiao, N., Wang, Y., and Chai, F.: Complexities of regulating climate by promoting marine
 primary production with ocean iron fertilization, Earth Sci. Rev., 249, 104675,
 https://doi.org/10.1016/j.earscirev.2024.104675, 2024.
- Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J., Boyd, P. W.,
 Duce, R. A., Hunter, K. A., Kawahata, H., Kubilay, N., laRoche, J., Liss, P. S., Mahowald, N.,
 Prospero, J. M., Ridgwell, A. J., Tegen, I., and Torres, R.: Global Iron Connections Between Desert
 Dust, Ocean Biogeochemistry, and Climate, Science, 308, 67-71,
 https://doi.org/10.1126/science.1105959, 2005.
- Jickells, T. D., Baker, A. R., and Chance, R.: Atmospheric transport of trace elements and nutrients to the oceans, Phil. Trans. R. Soc. A, 374, 20150286, https://doi.org/10.1098/rsta.2015.0286, 2016.
- Kok, J. F., Storelvmo, T., Karydis, V. A., Adebiyi, A. A., Mahowald, N. M., Evan, A. T., He, C., and Leung, D.

- 615 M.: Mineral dust aerosol impacts on global climate and climate change, Nat. Rev. Earth Environ., 4, 616 71-86, https://doi.org/10.1038/s43017-022-00379-5, 2023.
- 617 Li, R., Zhang, H., Wang, F., Ren, Y., Jia, S., Jiang, B., Jia, X., Tang, Y., and Tang, M.: Abundance and fractional 618 solubility of phosphorus and trace metals in combustion ash and desert dust: Implications for 619 bioavailability and reactivity, Sci. Total Environ., 816, 151495, 620 https://doi.org/10.1016/j.scitotenv.2021.151495, 2022.
- 621 Li, R., Dong, S., Huang, C., Yu, F., Wang, F., Li, X., Zhang, H., Ren, Y., Guo, M., Chen, Q., Ge, B., and Tang, 622 M.: Evaluating the effects of contact time and leaching solution on measured solubilities of aerosol 623 trace metals, Appl. Geochem., 148, 105551, https://doi.org/10.1016/j.apgeochem.2022.105551, 2023.
- 624 Li, R., Panda, P. P., Chen, Y., Zhu, Z., Wang, F., Zhu, Y., Meng, H., Ren, Y., Kumar, A., and Tang, M.: Aerosol 625 trace element solubility determined using ultrapure water batch leaching: an intercomparison study of four different leaching protocols, Atmos. Meas. Tech., 17, 3147-3156, https://doi.org/10.5194/amt-17-626 627 3147-2024, 2024.
- 628 Li, T., Wang, Y., Zhou, J., Wang, T., Ding, A., Nie, W., Xue, L., Wang, X., and Wang, W.: Evolution of trace 629 elements in the planetary boundary layer in southern China: Effects of dust storms and aerosol-cloud 630 interactions, J. Geophys. Res.-Atmos., 122, 3492-3506, https://doi.org/10.1002/2016JD025541, 2017.
- 631 Li, W., Shao, L., Shi, Z., Chen, J., Yang, L., Yuan, Q., Yan, C., Zhang, X., Wang, Y., Sun, J., Zhang, Y., Shen, X., 632 Wang, Z., and Wang, W.: Mixing state and hygroscopicity of dust and haze particles before leaving Asian continent, J. Geophys. Res.-Atmos., 119, 1044-1059, https://doi.org/10.1002/2013JD021003, 633 634
- 635 Liu, Y., Wu, Z., Wang, Y., Xiao, Y., Gu, F., Zheng, J., Tan, T., Shang, D., Wu, Y., Zeng, L., Hu, M., Bateman, A. 636 P., and Martin, S. T.: Submicrometer Particles Are in the Liquid State during Heavy Haze Episodes in 637 the Urban Atmosphere of Beijing, China, Environ. Sci. Technol. Lett., 4, 427-432, 638 https://doi.org/10.1021/acs.estlett.7b00352, 2017.
- 639 López-García, P., Gelado-Caballero, M. D., Collado-Sánchez, C., and Hernández-Brito, J. J.: Solubility of 640 aerosol trace elements: Sources and deposition fluxes in the Canary Region, Atmos. Environ., 148, 641 167-174, https://doi.org/10.1016/j.atmosenv.2016.10.035, 2017.
- 642 Mahowald, N.: Aerosol Indirect Effect on Biogeochemical Cycles and Climate, Science, 334, 794-796, 643 https://doi.org/10.1126/science.1207374, 2011.
- 644 Mahowald, N. M., Hamilton, D. S., Mackey, K. R. M., Moore, J. K., Baker, A. R., Scanza, R. A., and Zhang, Y.: 645 Aerosol trace metal leaching and impacts on marine microorganisms, Nat. Commun., 9, 2614, 646 https://doi.org/10.1038/s41467-018-04970-7, 2018.
- 647 Measures, C. I., and Brown, E. T.: Estimating Dust Input to the Atlantic Ocean Using Surface Water Aluminium 648 Concentrations, in: The Impact of Desert Dust Across the Mediterranean, edited by: Guerzoni, S., and 649 Chester, R., Springer Netherlands, Dordrecht, 301-311, 1996.
- 650 Measures, C. I., and Vink, S.: On the use of dissolved aluminum in surface waters to estimate dust deposition to 651 the ocean, Global Biogeochem. Cycles, 14, 317-327, https://doi.org/10.1029/1999GB001188, 2000.
- 652 Measures, C. I., Sato, T., Vink, S., Howell, S., and Li, Y. H.: The fractional solubility of aluminium from mineral 653 aerosols collected in Hawaii and implications for atmospheric deposition of biogeochemically 654 important trace elements, Mar. Chem., 120, 144-153, https://doi.org/10.1016/j.marchem.2009.01.014, 655
- 656 Meskhidze, N., Völker, C., Al-Abadleh, H. A., Barbeau, K., Bressac, M., Buck, C., Bundy, R. M., Croot, P., Feng, Y., Ito, A., Johansen, A. M., Landing, W. M., Mao, J., Myriokefalitakis, S., Ohnemus, D., 657

2010.

- Pasquier, B., and Ye, Y.: Perspective on identifying and characterizing the processes controlling iron speciation and residence time at the atmosphere-ocean interface, Mar. Chem., 217, 103704, https://doi.org/10.1016/j.marchem.2019.103704, 2019.
- Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., Galbraith, E. D., Geider, R.
 J., Guieu, C., Jaccard, S. L., Jickells, T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón,
 E., Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A., Thingstad, T. F., Tsuda, A., and
 Ulloa, O.: Processes and patterns of oceanic nutrient limitation, Nature Geoscience, 6, 701-710,
 https://doi.org/10.1038/ngeo1765, 2013.
- Pan, X., Uno, I., Wang, Z., Nishizawa, T., Sugimoto, N., Yamamoto, S., Kobayashi, H., Sun, Y., Fu, P., Tang, X.,
 and Wang, Z.: Real-time observational evidence of changing Asian dust morphology with the mixing of
 heavy anthropogenic pollution, Sci. Rep., 7, 335, https://doi.org/10.1038/s41598-017-00444-w, 2017.
- Paris, R., Desboeufs, K. V., Formenti, P., Nava, S., and Chou, C.: Chemical characterisation of iron in dust and
 biomass burning aerosols during AMMA-SOP0/DABEX: implication for iron solubility, Atmos. Chem.
 Phys., 10, 4273-4282, https://doi.org/10.5194/acp-10-4273-2010, 2010.
- Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., and Gill, T. E.: Environmental characterization of
 global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping
 Spectrometer (TOMS) absorbing aerosol product, Rev. Geophys., 40, 2-1-2-31,
 https://doi.org/10.1029/2000RG000095, 2002.
- Riemer, N., Ault, A. P., West, M., Craig, R. L., and Curtis, J. H.: Aerosol Mixing State: Measurements,
 Modeling, and Impacts, Rev. Geophys., 57, 187-249, https://doi.org/10.1029/2018RG000615, 2019.
- Sakata, K., Sakaguchi, A., Yamakawa, Y., Miyamoto, C., Kurisu, M., and Takahashi, Y.: Measurement report:
 Stoichiometry of dissolved iron and aluminum as an indicator of the factors controlling the fractional
 solubility of aerosol iron results of the annual observations of size-fractionated aerosol particles in
 Japan, Atmos. Chem. Phys., 23, 9815-9836, https://doi.org/10.5194/acp-23-9815-2023, 2023.
- Schroth, A. W., Crusius, J., Sholkovitz, E. R., and Bostick, B. C.: Iron solubility driven by speciation in dust sources to the ocean, Nature Geoscience, 2, 337-340, https://doi.org/10.1038/ngeo501, 2009.
- 684 Schulz, M., Prospero, J. M., Baker, A. R., Dentener, F., Ickes, L., Liss, P. S., Mahowald, N. M., Nickovic, S.,
 685 García-Pando, C. P., Rodríguez, S., Sarin, M., Tegen, I., and Duce, R. A.: Atmospheric Transport and
 686 Deposition of Mineral Dust to the Ocean: Implications for Research Needs, Environ. Sci. Technol., 46,
 687 10390-10404, https://doi.org/10.1021/es300073u, 2012.
- Sedwick, P. N., Sholkovitz, E. R., and Church, T. M.: Impact of anthropogenic combustion emissions on the
 fractional solubility of aerosol iron: Evidence from the Sargasso Sea, Geochem. Geophys. Geosyst., 8,
 https://doi.org/10.1029/2007GC001586, 2007.
- Shang, T., Kong, L., and Qi, J.: Metal elements in atmospheric aerosols during different pollution events in the
 coastal region of the Yellow Sea: Concentration, solubility and deposition flux, Mar. Pollut. Bull., 206,
 116711, https://doi.org/10.1016/j.marpolbul.2024.116711, 2024.
- Shelley, R. U., Landing, W. M., Ussher, S. J., Planquette, H., and Sarthou, G.: Regional trends in the fractional solubility of Fe and other metals from North Atlantic aerosols (GEOTRACES cruises GA01 and GA03) following a two-stage leach, Biogeosciences, 15, 2271-2288, https://doi.org/10.5194/bg-15-2271-2018, 2018.
- Shelley, R. U., Baker, A. R., Thomas, M., and Murphy, S.: Aerosol trace element solubility and deposition fluxes
 over the Mediterranean Sea and Black Sea basins, Biogeosciences, 22, 585-600,
 https://doi.org/10.5194/bg-22-585-2025, 2025.

- Shi, J., Guan, Y., Ito, A., Gao, H., Yao, X., Baker, A. R., and Zhang, D.: High Production of Soluble Iron
 Promoted by Aerosol Acidification in Fog, Geophys. Res. Lett., 47, e2019GL086124,
 https://doi.org/10.1029/2019GL086124, 2020.
- Shi, Z. B., Woodhouse, M. T., Carslaw, K. S., Krom, M. D., Mann, G. W., Baker, A. R., Savov, I., Fones, G. R.,
 Brooks, B., Drake, N., Jickells, T. D., and Benning, L. G.: Minor effect of physical size sorting on iron
 solubility of transported mineral dust, Atmos. Chem. Phys., 11, 8459-8469, https://doi.org/10.5194/acp-11-8459-2011, 2011.
- Sholkovitz, E. R., Sedwick, P. N., and Church, T. M.: Influence of anthropogenic combustion emissions on the
 deposition of soluble aerosol iron to the ocean: Empirical estimates for island sites in the North
 Atlantic, Geochim. Cosmochim. Acta, 73, 3981-4003, https://doi.org/10.1016/j.gca.2009.04.029, 2009.
- Song, M., Jeong, R., Kim, D., Qiu, Y., Meng, X., Wu, Z., Zuend, A., Ha, Y., Kim, C., Kim, H., Gaikwad, S.,
 Jang, K. S., Lee, J. Y., and Ahn, J.: Comparison of Phase States of PM(2.5) over Megacities, Seoul and
 Beijing, and Their Implications on Particle Size Distribution, Environ. Sci. Technol., 56, 17581-17590,
 https://doi.org/10.1021/acs.est.2c06377, 2022.
- Sullivan, R. C., Guazzotti, S. A., Sodeman, D. A., and Prather, K. A.: Direct observations of the atmospheric
 processing of Asian mineral dust, Atmos. Chem. Phys., 7, 1213-1236, https://doi.org/10.5194/acp-7-1213-2007, 2007.
- Sun, J., Liu, L., Xu, L., Wang, Y., Wu, Z., Hu, M., Shi, Z., Li, Y., Zhang, X., Chen, J., and Li, W.: Key Role of
 Nitrate in Phase Transitions of Urban Particles: Implications of Important Reactive Surfaces for
 Secondary Aerosol Formation, J. Geophys. Res.-Atmos., 123, 1234-1243,
 https://doi.org/10.1002/2017JD027264, 2018.
- Takahashi, Y., Higashi, M., Furukawa, T., and Mitsunobu, S.: Change of iron species and iron solubility in Asian
 dust during the long-range transport from western China to Japan, Atmos. Chem. Phys., 11, 11237 11252, https://doi.org/10.5194/acp-11-11237-2011, 2011.
- Tang, M., Cziczo, D. J., and Grassian, V. H.: Interactions of Water with Mineral Dust Aerosol: Water
 Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation, Chem. Rev., 116, 4205-4259,
 https://doi.org/10.1021/acs.chemrev.5b00529, 2016.
- Taylor, S. R., and McLennan, S. M.: The continental crust: Its composition and evolution, Blackwell Scientific
 Publications, Oxford, 312 pp., 1985.
- Trochkine, D., Iwasaka, Y., Matsuki, A., Yamada, M., Kim, Y.-S., Nagatani, T., Zhang, D., Shi, G.-Y., and Shen,
 Z.: Mineral aerosol particles collected in Dunhuang, China, and their comparison with chemically
 modified particles collected over Japan, J. Geophys. Res.-Atmos., 108, 8642,
 https://doi.org/10.1029/2002JD003268, 2003.
- Virkkula, A., Teinilä, K., Hillamo, R., Kerminen, V. M., Saarikoski, S., Aurela, M., Viidanoja, J., Paatero, J.,
 Koponen, I. K., and Kulmala, M.: Chemical composition of boundary layer aerosol over the Atlantic
 Ocean and at an Antarctic site, Atmos. Chem. Phys., 6, 3407-3421, https://doi.org/10.5194/acp-6-3407-2006, 2006.
- Walters, W. W., and Hastings, M. G.: Collection of Ammonia for High Time-Resolved Nitrogen Isotopic
 Characterization Utilizing an Acid-Coated Honeycomb Denuder, Anal. Chem., 90, 8051-8057,
 https://doi.org/10.1021/acs.analchem.8b01007, 2018.
- Wang, G. H., Cheng, C. L., Huang, Y., Tao, J., Ren, Y. Q., Wu, F., Meng, J. J., Li, J. J., Cheng, Y. T., Cao, J. J.,
 Liu, S. X., Zhang, T., Zhang, R., and Chen, Y. B.: Evolution of aerosol chemistry in Xi'an, inland
 China, during the dust storm period of 2013 Part 1: Sources, chemical forms and formation

- 744 mechanisms of nitrate and sulfate, Atmos. Chem. Phys., 14, 11571-11585, https://doi.org/10.5194/acp-14-11571-2014, 2014.
- Westberry, T. K., Behrenfeld, M. J., Shi, Y. R., Yu, H., Remer, L. A., and Bian, H.: Atmospheric nourishment of global ocean ecosystems, Science, 380, 515-519, https://doi.org/10.1126/science.abq5252, 2023.
- Wu, F., Zhang, D., Cao, J., Guo, X., Xia, Y., Zhang, T., Lu, H., and Cheng, Y.: Limited production of sulfate and nitrate on front-associated dust storm particles moving from desert to distant populated areas in northwestern China, Atmos. Chem. Phys., 17, 14473-14484, https://doi.org/10.5194/acp-17-14473-2017, 2017.
- Xu, H., and Weber, T.: Ocean Dust Deposition Rates Constrained in a Data-Assimilation Model of the Marine
 Aluminum Cycle, Global Biogeochem. Cycles, 35, e2021GB007049,
 https://doi.org/10.1029/2021GB007049, 2021.
- Yang, J., Ma, L., He, X., Au, W. C., Miao, Y., Wang, W. X., and Nah, T.: Measurement report: Abundance and
 fractional solubilities of aerosol metals in urban Hong Kong insights into factors that control aerosol
 metal dissolution in an urban site in South China, Atmos. Chem. Phys., 23, 1403-1419,
 https://doi.org/10.5194/acp-23-1403-2023, 2023.
- Zhang, H., Li, R., Dong, S., Wang, F., Zhu, Y., Meng, H., Huang, C., Ren, Y., Wang, X., Hu, X., Li, T., Peng, C.,
 Zhang, G., Xue, L., Wang, X., and Tang, M.: Abundance and Fractional Solubility of Aerosol Iron
 During Winter at a Coastal City in Northern China: Similarities and Contrasts Between Fine and
 Coarse Particles, J. Geophys. Res.-Atmos., 127, e2021JD036070,
 https://doi.org/10.1029/2021JD036070, 2022.
- Zhang, H., Li, R., Huang, C., Li, X., Dong, S., Wang, F., Li, T., Chen, Y., Zhang, G., Ren, Y., Chen, Q., Huang,
 R., Chen, S., Xue, T., Wang, X., and Tang, M.: Seasonal variation of aerosol iron solubility in coarse
 and fine particles at an inland city in northwestern China, Atmos. Chem. Phys., 23, 3543-3559,
 https://doi.org/10.5194/acp-23-3543-2023, 2023.
- Zhang, L., Kojima, T., and Zhang, D.: Origins and Aging of Calcium-rich Mineral Particles in Asian Dust
 Arriving in Southwestern Japan: A Comparison of Slow- and Fast-moving Events, Aerosol Sci. Eng.,
 https://doi.org/10.1007/s41810-024-00275-z, 2024.
- Zhang, X. Y., Gong, S. L., Shen, Z. X., Mei, F. M., Xi, X. X., Liu, L. C., Zhou, Z. J., Wang, D., Wang, Y. Q., and
 Cheng, Y.: Characterization of soil dust aerosol in China and its transport and distribution during 2001
 ACE-Asia: 1. Network observations, J. Geophys. Res.-Atmos., 108, 4261,
 https://doi.org/10.1029/2002JD002632, 2003.
- Zhi, M., Wang, G., Xu, L., Li, K., Nie, W., Niu, H., Shao, L., Liu, Z., Yi, Z., Wang, Y., Shi, Z., Ito, A., Zhai, S.,
 and Li, W.: How Acid Iron Dissolution in Aged Dust Particles Responds to the Buffering Capacity of
 Carbonate Minerals during Asian Dust Storms, Environ. Sci. Technol., 59, 6167-6178,
 https://doi.org/10.1021/acs.est.4c12370, 2025.